Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 | 253x 1069x 1069x 1069x 1069x 1069x 1069x 1312x 1069x 1069x 1390x 1390x 1390x 1386x 1386x 11x 11x 11x 11x 11x 1375x 15x 15x 27x 15x 15x 32x 32x 32x 32x 32x 4x 7x 1360x 1069x 1414x 1414x 1414x 1410x 1410x 11x 1399x 1380x 20x 19x 4x 1069x 1380x 1380x 1380x 1380x 2x 2x 1378x 1069x 15x 15x 19x 19x 19x 19x 1069x 21x 1x 20x 20x 20x 8x 1x 7x 7x 7x 16x 16x 16x 16x 16x 16x 16x 11x 11x 1x 1x 1x 1x 1x 1x 1x 1x 1x 16x 7x 40x 28x 28x 27x 3x 1x 3x 1x 2x 2x 2x 1x 2x 24x 24x 15x 5x 1x 1x 1x 1x 13x 1454x 1x 1453x 1453x 1x 1452x 1452x 42x 44x 44x 42x 42x 42x 42x 1452x 232x 635x 335x 157x 7x 9x 30x 11x 11x 11x 1x 1x 10x 8x 8x 8x 1x 1x 7x 8x 3x 3x 2x 2x 1x 1x 2x 8x 8x 3x 3x 5x 19x 19x 5x 5x 5x 5x 4x 1x 1x 5x 5x 4x 19x 18x 19x 19x 19x 10x 9x 19x 8x 1x 1x 19x 18x 17x 19x 19x 1x 1x 18x 1x 52x 5894x 5644x 31x 1x 30x 30x 9x 2x 7x 184x 184x 184x 184x 239x 239x 239x 239x 239x 5x 5x 5x 5x 234x 234x 184x 11x 11x | /**
* Measure Builder
* Handles all measure-related SQL generation:
* - Measure expression building with aggregations (count, sum, avg, etc.)
* - Statistical functions (stddev, variance, percentile)
* - Window functions (lag, lead, rank, etc.)
* - Calculated measure resolution and template substitution
* - CTE-specific measure handling
*/
import {
sql,
and,
count,
sum,
min,
max,
countDistinct,
SQL,
type AnyColumn
} from 'drizzle-orm'
import type {
Cube,
QueryContext,
QueryPlan
} from '../types'
import { resolveSqlExpression } from '../cube-utils'
import type { DatabaseAdapter } from '../adapters/base-adapter'
import { CalculatedMeasureResolver } from '../calculated-measure-resolver'
import { substituteTemplate, getMemberReferences, type ResolvedMeasures } from '../template-substitution'
export class MeasureBuilder {
constructor(private databaseAdapter: DatabaseAdapter) {}
/**
* Build resolvedMeasures map for a set of measures
* This centralizes the logic for building both regular and calculated measures
* in dependency order, avoiding duplication across main queries and CTEs
*
* @param measureNames - Array of measure names to resolve (e.g., ["Employees.count", "Employees.activePercentage"])
* @param cubeMap - Map of all cubes involved in the query
* @param context - Query context with database and security context
* @param customMeasureBuilder - Optional function to override how individual measures are built
* @returns Map of measure names to SQL builder functions
*/
buildResolvedMeasures(
measureNames: string[],
cubeMap: Map<string, Cube>,
context: QueryContext,
customMeasureBuilder?: (measureName: string, measure: any, cube: Cube) => SQL
): ResolvedMeasures {
const resolvedMeasures: ResolvedMeasures = new Map()
const regularMeasures: string[] = []
const calculatedMeasures: string[] = []
const allMeasuresToResolve = new Set<string>(measureNames)
// Build dependency graph
const resolver = new CalculatedMeasureResolver(cubeMap)
for (const cube of cubeMap.values()) {
resolver.buildGraph(cube)
}
// First pass: classify user-requested measures and collect dependencies
// Post-aggregation window measures are handled separately in the executor
const postAggWindowMeasures: string[] = []
for (const measureName of measureNames) {
const [cubeName, fieldName] = measureName.split('.')
const cube = cubeMap.get(cubeName)
if (cube && cube.measures && cube.measures[fieldName]) {
const measure = cube.measures[fieldName]
// Post-aggregation window functions are handled separately
// They don't go through buildMeasureExpression
if (MeasureBuilder.isPostAggregationWindow(measure)) {
postAggWindowMeasures.push(measureName)
// Add the base measure as a dependency
const baseMeasure = MeasureBuilder.getWindowBaseMeasure(measure, cubeName)
Eif (baseMeasure) {
allMeasuresToResolve.add(baseMeasure)
}
continue
}
if (CalculatedMeasureResolver.isCalculatedMeasure(measure)) {
calculatedMeasures.push(measureName)
// Add all dependencies to measures that need to be resolved
const deps = getMemberReferences(measure.calculatedSql!, cubeName)
deps.forEach(dep => allMeasuresToResolve.add(dep))
// Also add transitive calculated measure dependencies
const calculatedDeps = resolver.getAllDependencies(measureName)
calculatedDeps.forEach(dep => {
const [depCubeName, depFieldName] = dep.split('.')
const depCube = cubeMap.get(depCubeName)
Eif (depCube && depCube.measures[depFieldName]) {
const depMeasure = depCube.measures[depFieldName]
if (CalculatedMeasureResolver.isCalculatedMeasure(depMeasure)) {
const nestedDeps = getMemberReferences(depMeasure.calculatedSql!, depCubeName)
nestedDeps.forEach(nestedDep => allMeasuresToResolve.add(nestedDep))
}
}
})
} else {
regularMeasures.push(measureName)
}
}
}
// Second pass: classify all measures that need to be resolved (including dependencies)
// Skip post-aggregation window measures - they're handled separately
for (const measureName of allMeasuresToResolve) {
const [cubeName, fieldName] = measureName.split('.')
const cube = cubeMap.get(cubeName)
if (cube && cube.measures && cube.measures[fieldName]) {
const measure = cube.measures[fieldName]
// Skip post-aggregation window measures
if (MeasureBuilder.isPostAggregationWindow(measure)) {
continue
}
if (!CalculatedMeasureResolver.isCalculatedMeasure(measure)) {
if (!regularMeasures.includes(measureName)) {
regularMeasures.push(measureName)
}
} else {
if (!calculatedMeasures.includes(measureName)) {
calculatedMeasures.push(measureName)
}
}
}
}
// Build regular measures first
for (const measureName of regularMeasures) {
const [cubeName, fieldName] = measureName.split('.')
const cube = cubeMap.get(cubeName)!
const measure = cube.measures[fieldName]
// Use custom builder if provided, otherwise use default
if (customMeasureBuilder) {
const builtExpr = customMeasureBuilder(measureName, measure, cube)
resolvedMeasures.set(measureName, () => builtExpr)
} else {
// Store a FUNCTION that builds the SQL expression to avoid mutation issues
// Pass cube for window function dimension resolution
resolvedMeasures.set(measureName, () => this.buildMeasureExpression(measure, context, cube))
}
}
// Build calculated measures in dependency order
if (calculatedMeasures.length > 0) {
const sortedCalculated = resolver.topologicalSort(calculatedMeasures)
for (const measureName of sortedCalculated) {
const [cubeName, fieldName] = measureName.split('.')
const cube = cubeMap.get(cubeName)!
const measure = cube.measures[fieldName]
// Store a FUNCTION that builds the calculated measure SQL
resolvedMeasures.set(measureName, () => this.buildCalculatedMeasure(
measure,
cube,
cubeMap,
resolvedMeasures,
context
))
}
}
return resolvedMeasures
}
/**
* Build calculated measure expression by substituting {member} references
* with resolved SQL expressions
*/
buildCalculatedMeasure(
measure: any,
cube: Cube,
allCubes: Map<string, Cube>,
resolvedMeasures: ResolvedMeasures,
context: QueryContext
): SQL {
if (!measure.calculatedSql) {
throw new Error(
`Calculated measure '${cube.name}.${measure.name}' missing calculatedSql property`
)
}
// Preprocess template for database-specific transformations (e.g., SQLite float division)
const preprocessedSql = this.databaseAdapter.preprocessCalculatedTemplate(measure.calculatedSql)
// Substitute {member} references with resolved SQL
const substitutedSql = substituteTemplate(preprocessedSql, {
cube,
allCubes,
resolvedMeasures,
queryContext: context
})
return substitutedSql
}
/**
* Build resolved measures map for a calculated measure from CTE columns
* This handles re-aggregating pre-aggregated CTE columns for calculated measures
*
* IMPORTANT: For calculated measures in CTEs, we cannot sum/avg pre-computed ratios.
* We must recalculate from the base measures that were pre-aggregated in the CTE.
*
* @param measure - The calculated measure to build
* @param cube - The cube containing this measure
* @param cteInfo - CTE metadata (alias, measures, cube reference)
* @param allCubes - Map of all cubes in the query
* @param context - Query context
* @returns SQL expression for the calculated measure using CTE column references
*/
buildCTECalculatedMeasure(
measure: any,
cube: Cube,
cteInfo: { cteAlias: string; measures: string[]; cube: Cube },
allCubes: Map<string, Cube>,
context: QueryContext
): SQL {
if (!measure.calculatedSql) {
throw new Error(
`Calculated measure '${cube.name}.${measure.name || 'unknown'}' missing calculatedSql property`
)
}
// Build a resolvedMeasures map with CTE column references
const cteResolvedMeasures = new Map<string, () => SQL>()
// Get all dependencies for this calculated measure
const deps = getMemberReferences(measure.calculatedSql, cube.name)
for (const depMeasureName of deps) {
const [depCubeName, depFieldName] = depMeasureName.split('.')
const depCube = allCubes.get(depCubeName)
Eif (depCube && depCube.measures[depFieldName]) {
const depMeasure = depCube.measures[depFieldName]
// Check if this dependency is also in the CTE
Eif (cteInfo.measures.includes(depMeasureName)) {
// Reference the CTE column and apply appropriate aggregation
const cteDepColumn = sql`${sql.identifier(cteInfo.cteAlias)}.${sql.identifier(depFieldName)}`
// Apply aggregation based on the dependency's type
// For pre-aggregated values in CTEs, we need to re-aggregate them properly:
// - count/sum values should be summed
// - avg values should be averaged (though ideally weighted average)
// - min/max values should take min/max
let aggregatedDep: SQL
switch (depMeasure.type) {
case 'count':
case 'countDistinct':
case 'sum':
aggregatedDep = sum(cteDepColumn)
break
case 'avg':
aggregatedDep = this.databaseAdapter.buildAvg(cteDepColumn)
break
case 'min':
aggregatedDep = min(cteDepColumn)
break
case 'max':
aggregatedDep = max(cteDepColumn)
break
case 'number':
aggregatedDep = sum(cteDepColumn)
break
default:
aggregatedDep = sum(cteDepColumn)
}
// Store the aggregated CTE column as a builder function
cteResolvedMeasures.set(depMeasureName, () => aggregatedDep)
}
}
}
// Re-apply the calculated measure template with CTE-based dependencies
return this.buildCalculatedMeasure(
measure,
cube,
allCubes,
cteResolvedMeasures,
context
)
}
/**
* Build measure expression for HAVING clause, handling CTE references correctly
*/
buildHavingMeasureExpression(
cubeName: string,
fieldKey: string,
measure: any,
context: QueryContext,
queryPlan?: QueryPlan
): SQL {
// Check if this measure is from a CTE cube
if (queryPlan && queryPlan.preAggregationCTEs) {
const cteInfo = queryPlan.preAggregationCTEs.find(cte => cte.cube.name === cubeName)
if (cteInfo && cteInfo.measures.includes(`${cubeName}.${fieldKey}`)) {
// This measure is from a CTE - reference the CTE alias instead of the original table
if (measure.type === 'calculated' && measure.calculatedSql) {
// Get the cube for this measure
const cube = queryPlan.primaryCube.name === cubeName
? queryPlan.primaryCube
: queryPlan.joinCubes?.find(jc => jc.cube.name === cubeName)?.cube
if (!cube) {
throw new Error(`Cube ${cubeName} not found in query plan`)
}
// Build a cubeMap for the calculated measure builder
const cubeMap = new Map<string, Cube>([[queryPlan.primaryCube.name, queryPlan.primaryCube]])
Eif (queryPlan.joinCubes) {
for (const jc of queryPlan.joinCubes) {
cubeMap.set(jc.cube.name, jc.cube)
}
}
// Use the shared helper to build calculated measure from CTE columns
return this.buildCTECalculatedMeasure(
measure,
cube,
cteInfo,
cubeMap,
context
)
} else {
// For non-calculated measures, aggregate the CTE column directly
const cteColumn = sql`${sql.identifier(cteInfo.cteAlias)}.${sql.identifier(fieldKey)}`
// Apply aggregation function based on measure type
switch (measure.type) {
case 'count':
case 'countDistinct':
case 'sum':
return sum(cteColumn)
case 'avg':
// For average of averages, we should use a weighted average, but for now use simple avg
return this.databaseAdapter.buildAvg(cteColumn)
case 'min':
return min(cteColumn)
case 'max':
return max(cteColumn)
case 'number':
// For number type, use sum to combine values
return sum(cteColumn)
default:
return sum(cteColumn)
}
}
}
}
// Not from CTE - use regular measure expression
return this.buildMeasureExpression(measure, context)
}
/**
* Build measure expression with aggregation and filters
* Note: This should NOT be called for calculated measures
*
* @param measure - The measure definition
* @param context - Query context with security context and database info
* @param cube - Optional cube reference for resolving dimension references (window functions)
*/
buildMeasureExpression(
measure: any,
context: QueryContext,
cube?: Cube
): SQL {
// Calculated measures should be built via buildCalculatedMeasure
if (measure.type === 'calculated') {
throw new Error(
`Cannot build calculated measure '${measure.name}' directly. ` +
`Use buildCalculatedMeasure instead.`
)
}
// Post-aggregation window functions don't use sql property - they reference another measure
// These are handled in the executor's buildPostAggregationWindowExpression method
Iif (MeasureBuilder.isPostAggregationWindow(measure)) {
throw new Error(
`Post-aggregation window measure '${measure.name}' should be built via ` +
`buildPostAggregationWindowExpression, not buildMeasureExpression.`
)
}
// Non-calculated, non-post-agg-window measures must have sql property
if (!measure.sql) {
throw new Error(
`Measure '${measure.name}' of type '${measure.type}' is missing required 'sql' property. ` +
`Only calculated measures and post-aggregation window functions can omit 'sql'.`
)
}
// resolveSqlExpression already applies isolation via isolateSqlExpression()
// This protects against Drizzle SQL object mutation during reuse
let baseExpr = resolveSqlExpression(measure.sql, context)
// Apply measure filters if they exist
if (measure.filters && measure.filters.length > 0) {
const filterConditions = measure.filters.map((filter: (ctx: QueryContext) => SQL) => {
const filterResult = filter(context)
// Single wrap is OK here - we're creating fresh SQL for grouping in parentheses
// The filter function itself should handle isolation if needed
return filterResult ? sql`(${filterResult})` : undefined
}).filter(Boolean) // Remove any undefined conditions
Eif (filterConditions.length > 0) {
// Use CASE WHEN for conditional aggregation via adapter
const andCondition = filterConditions.length === 1 ? filterConditions[0] : and(...filterConditions)
const caseExpr = this.databaseAdapter.buildCaseWhen([
{ when: andCondition!, then: baseExpr }
])
baseExpr = caseExpr
}
}
// Apply aggregation function based on measure type
switch (measure.type) {
case 'count':
return count(baseExpr)
case 'countDistinct':
return countDistinct(baseExpr)
case 'sum':
return sum(baseExpr)
case 'avg':
return this.databaseAdapter.buildAvg(baseExpr)
case 'min':
return min(baseExpr)
case 'max':
return max(baseExpr)
case 'number':
return baseExpr as SQL
// Statistical functions (Phase 1)
case 'stddev':
case 'stddevSamp': {
const useSample = measure.type === 'stddevSamp' || measure.statisticalConfig?.useSample
const result = this.databaseAdapter.buildStddev(baseExpr, useSample)
if (result === null) {
console.warn(`[drizzle-cube] ${measure.type} not supported on ${this.databaseAdapter.getEngineType()}, returning NULL`)
// Use MAX(NULL) to ensure proper aggregation behavior
return sql`MAX(NULL)`
}
return result
}
case 'variance':
case 'varianceSamp': {
const useSample = measure.type === 'varianceSamp' || measure.statisticalConfig?.useSample
const result = this.databaseAdapter.buildVariance(baseExpr, useSample)
if (result === null) {
console.warn(`[drizzle-cube] ${measure.type} not supported on ${this.databaseAdapter.getEngineType()}, returning NULL`)
// Use MAX(NULL) to ensure proper aggregation behavior
return sql`MAX(NULL)`
}
return result
}
case 'percentile':
case 'median':
case 'p95':
case 'p99': {
// Determine percentile value based on type
let pct: number
switch (measure.type) {
case 'median':
pct = 50
break
case 'p95':
pct = 95
break
case 'p99':
pct = 99
break
default:
pct = measure.statisticalConfig?.percentile ?? 50
}
const result = this.databaseAdapter.buildPercentile(baseExpr, pct)
if (result === null) {
console.warn(`[drizzle-cube] ${measure.type} not supported on ${this.databaseAdapter.getEngineType()}, returning NULL`)
// Use MAX(NULL) to ensure proper aggregation behavior
return sql`MAX(NULL)`
}
return result
}
// Window functions (Phase 2) - now with dimension resolution
case 'lag':
case 'lead':
case 'rank':
case 'denseRank':
case 'rowNumber':
case 'ntile':
case 'firstValue':
case 'lastValue':
case 'movingAvg':
case 'movingSum': {
const windowConfig = measure.windowConfig || {}
// Resolve partitionBy dimension references to SQL expressions
let partitionByExprs: (AnyColumn | SQL)[] | undefined
if (windowConfig.partitionBy && windowConfig.partitionBy.length > 0 && cube) {
const resolvedPartitions = windowConfig.partitionBy
.map((dimRef: string) => {
// Handle both "dimensionName" and "CubeName.dimensionName" formats
const dimName = dimRef.includes('.') ? dimRef.split('.')[1] : dimRef
const dimension = cube.dimensions?.[dimName]
if (dimension) {
return resolveSqlExpression(dimension.sql, context)
}
console.warn(`[drizzle-cube] Window function partition dimension '${dimRef}' not found in cube '${cube.name}'`)
return null
})
.filter((expr: AnyColumn | SQL | null): expr is AnyColumn | SQL => expr !== null)
if (resolvedPartitions.length > 0) {
partitionByExprs = resolvedPartitions
}
}
// Resolve orderBy dimension/measure references to SQL expressions
type OrderByExpr = { field: AnyColumn | SQL; direction: 'asc' | 'desc' }
let orderByExprs: OrderByExpr[] | undefined
if (windowConfig.orderBy && windowConfig.orderBy.length > 0 && cube) {
const resolvedOrders = windowConfig.orderBy
.map((orderSpec: { field: string; direction: 'asc' | 'desc' }): OrderByExpr | null => {
// Handle both "fieldName" and "CubeName.fieldName" formats
const fieldName = orderSpec.field.includes('.') ? orderSpec.field.split('.')[1] : orderSpec.field
// First check dimensions, then measures
const dimension = cube.dimensions?.[fieldName]
if (dimension) {
return {
field: resolveSqlExpression(dimension.sql, context),
direction: orderSpec.direction
}
}
const measureDef = cube.measures?.[fieldName]
if (measureDef && measureDef.sql) {
return {
field: resolveSqlExpression(measureDef.sql, context),
direction: orderSpec.direction
}
}
console.warn(`[drizzle-cube] Window function order field '${orderSpec.field}' not found in cube '${cube.name}'`)
return null
})
.filter((expr: OrderByExpr | null): expr is OrderByExpr => expr !== null)
if (resolvedOrders.length > 0) {
orderByExprs = resolvedOrders
}
}
const result = this.databaseAdapter.buildWindowFunction(
measure.type,
['rank', 'denseRank', 'rowNumber'].includes(measure.type) ? null : baseExpr,
partitionByExprs,
orderByExprs,
{
offset: windowConfig.offset,
defaultValue: windowConfig.defaultValue,
nTile: windowConfig.nTile,
frame: windowConfig.frame
}
)
if (result === null) {
console.warn(`[drizzle-cube] ${measure.type} not supported on ${this.databaseAdapter.getEngineType()}, returning NULL`)
return sql`NULL`
}
return result
}
default:
return count(baseExpr)
}
}
/**
* List of measure types that are window functions
* Window functions require special handling in CTEs:
* - No GROUP BY in the CTE
* - No re-aggregation in outer query
* - Return individual rows, not grouped results
*/
static WINDOW_FUNCTION_TYPES = [
'lag', 'lead', 'rank', 'denseRank', 'rowNumber',
'ntile', 'firstValue', 'lastValue', 'movingAvg', 'movingSum'
] as const
/**
* Check if a measure type is a window function
* @param measureType - The measure type string
* @returns true if this is a window function type
*/
static isWindowFunction(measureType: string): boolean {
return (MeasureBuilder.WINDOW_FUNCTION_TYPES as readonly string[]).includes(measureType)
}
/**
* Categorize measures into window functions and regular aggregates
* Used by query planner to create separate CTEs for each category
*
* @param measureNames - Array of measure names (e.g., ["Productivity.rank", "Productivity.totalLines"])
* @param cubeMap - Map of cubes to look up measure definitions
* @returns Object with windowMeasures and aggregateMeasures arrays
*/
static categorizeMeasures(
measureNames: string[],
cubeMap: Map<string, Cube>
): { windowMeasures: string[]; aggregateMeasures: string[] } {
const windowMeasures: string[] = []
const aggregateMeasures: string[] = []
for (const measureName of measureNames) {
const [cubeName, fieldName] = measureName.split('.')
const cube = cubeMap.get(cubeName)
if (cube?.measures?.[fieldName]) {
const measure = cube.measures[fieldName]
if (MeasureBuilder.isWindowFunction(measure.type)) {
windowMeasures.push(measureName)
} else {
aggregateMeasures.push(measureName)
}
}
}
return { windowMeasures, aggregateMeasures }
}
/**
* Check if a query contains any window function measures
* @param measureNames - Array of measure names
* @param cubeMap - Map of cubes
* @returns true if any measure is a window function
*/
static hasWindowFunctions(
measureNames: string[],
cubeMap: Map<string, Cube>
): boolean {
const { windowMeasures } = MeasureBuilder.categorizeMeasures(measureNames, cubeMap)
return windowMeasures.length > 0
}
// ============================================================================
// Post-Aggregation Window Functions
// ============================================================================
/**
* Check if a measure is a post-aggregation window function.
* Post-aggregation windows have a `measure` reference in their windowConfig,
* indicating they should operate on aggregated data rather than raw rows.
*
* @param measure - The measure definition
* @returns true if this is a post-aggregation window function
*/
static isPostAggregationWindow(measure: any): boolean {
return (
MeasureBuilder.isWindowFunction(measure.type) &&
measure.windowConfig?.measure !== undefined
)
}
/**
* Get the base measure reference for a post-aggregation window function.
* Resolves simple names (e.g., 'totalRevenue') to fully qualified names ('Sales.totalRevenue').
*
* @param measure - The measure definition
* @param cubeName - The name of the cube containing this measure
* @returns Fully qualified base measure name, or null if not a post-agg window
*/
static getWindowBaseMeasure(measure: any, cubeName: string): string | null {
if (!measure.windowConfig?.measure) {
return null
}
const ref = measure.windowConfig.measure
return ref.includes('.') ? ref : `${cubeName}.${ref}`
}
/**
* Get the default operation for a window function type.
* - lag/lead default to 'difference' (compare current vs previous/next)
* - rank/rowNumber/ntile/firstValue/lastValue default to 'raw'
* - movingAvg/movingSum default to 'raw'
*
* @param windowType - The window function type
* @returns Default operation for the window type
*/
static getDefaultWindowOperation(windowType: string): 'raw' | 'difference' | 'ratio' | 'percentChange' {
switch (windowType) {
case 'lag':
case 'lead':
return 'difference'
default:
return 'raw'
}
}
/**
* Categorize measures for post-aggregation window function handling.
* Separates measures into:
* - aggregateMeasures: Regular aggregates (count, sum, avg, etc.)
* - postAggWindowMeasures: Window functions that reference a base measure
* - requiredBaseMeasures: Base measures needed by window functions (auto-added to query)
*
* @param measureNames - Array of measure names from the query
* @param cubeMap - Map of cubes to look up measure definitions
* @returns Categorized measures with base measure dependencies
*/
static categorizeForPostAggregation(
measureNames: string[],
cubeMap: Map<string, Cube>
): {
aggregateMeasures: string[]
postAggWindowMeasures: string[]
requiredBaseMeasures: Set<string>
} {
const aggregateMeasures: string[] = []
const postAggWindowMeasures: string[] = []
const requiredBaseMeasures = new Set<string>()
for (const measureName of measureNames) {
const [cubeName, fieldName] = measureName.split('.')
const cube = cubeMap.get(cubeName)
Eif (cube?.measures?.[fieldName]) {
const measure = cube.measures[fieldName]
if (MeasureBuilder.isPostAggregationWindow(measure)) {
postAggWindowMeasures.push(measureName)
// Extract and add the base measure as a required dependency
const baseMeasure = MeasureBuilder.getWindowBaseMeasure(measure, cubeName)
Eif (baseMeasure) {
requiredBaseMeasures.add(baseMeasure)
}
E} else if (!MeasureBuilder.isWindowFunction(measure.type)) {
// Regular aggregate measure (not a window function)
aggregateMeasures.push(measureName)
}
// Note: Pre-aggregation window functions (no windowConfig.measure) are no longer supported
// They should be updated to use the new post-aggregation pattern
}
}
return { aggregateMeasures, postAggWindowMeasures, requiredBaseMeasures }
}
/**
* Check if any measures in the query are post-aggregation window functions.
*
* @param measureNames - Array of measure names
* @param cubeMap - Map of cubes
* @returns true if any measure is a post-aggregation window function
*/
static hasPostAggregationWindows(
measureNames: string[],
cubeMap: Map<string, Cube>
): boolean {
const { postAggWindowMeasures } = MeasureBuilder.categorizeForPostAggregation(
measureNames,
cubeMap
)
return postAggWindowMeasures.length > 0
}
}
|