All files server/ai/discovery.ts

93.9% Statements 185/197
84.9% Branches 135/159
100% Functions 25/25
94.38% Lines 168/178

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545                                                                                                                                          42852x   42852x 546060x     42852x 301352x     42852x 503208x 3025500x 214820x   2810680x                 42852x             45204x 45204x     45204x     44812x     42852x 42852x 78044x 78044x       42852x 42852x 42852x   42852x             2996x 2996x 7508x 7508x 108x     2996x               412x                         412x       1464x                   1064x 1064x 1064x 1064x   1064x   2484x 2484x 136x 136x       2484x 2484x 152x 152x       2484x 2480x 2480x 288x 288x         2484x 848x 1580x 1580x 264x 264x           2484x 6196x     6196x 6196x     6196x     6196x 2196x       6196x 1464x     6196x 696x 696x 696x 696x         2484x 6764x     6764x 6764x     6764x     6764x         6764x 1464x     6764x 132x 132x 132x 132x           1064x     1064x 328x   612x   1064x 36x   132x   1064x               808x     2368x     808x 1824x           808x   808x                       404x     404x 284x       120x     120x 112x 112x             120x 440x 440x 48x               120x     120x 336x 112x             120x 440x 8x               120x 120x 440x 440x             112x             120x                     404x   404x 284x       120x 40x       120x 112x 112x       120x   120x                   416x     416x 416x   4x 12x 12x 12x 12x   12x           32x 32x                   412x 412x         412x 412x 1064x   1064x 392x 392x 392x     392x   392x                                 412x 112x                       60x   60x   100x                               100x 100x 276x 276x 276x 276x 68x     276x 40x           60x    
/**
 * AI Discovery Engine
 * Schema-aware intelligence for discovering relevant cubes and fields
 */
 
import type { CubeMetadata } from '../types/metadata'
import { QUERY_SCHEMAS } from './schemas'
 
/**
 * Discovery result for a cube
 */
export interface CubeDiscoveryResult {
  cube: string
  title: string
  description?: string
  relevanceScore: number
  matchedOn: ('name' | 'title' | 'description' | 'exampleQuestions' | 'measures' | 'dimensions')[]
  suggestedMeasures: string[]
  suggestedDimensions: string[]
 
  // Analysis capabilities
  capabilities: {
    query: true
    funnel: boolean
    flow: boolean
    retention: boolean
  }
 
  // Config for advanced modes (only present if capabilities exist)
  analysisConfig?: {
    candidateBindingKeys: Array<{
      dimension: string
      description?: string
    }>
    candidateTimeDimensions: Array<{
      dimension: string
      description?: string
    }>
    candidateEventDimensions: Array<{
      dimension: string
      description?: string
    }>
  }
 
  // Hints for AI on next steps
  hints?: string[]
 
  // Query schemas (included when capabilities.funnel/flow/retention is true)
  querySchemas?: typeof QUERY_SCHEMAS
}
 
/**
 * Discovery request options
 */
export interface DiscoveryOptions {
  /** Topic or intent to search for */
  topic?: string
  /** Natural language intent */
  intent?: string
  /** Maximum number of results */
  limit?: number
  /** Minimum relevance score (0-1) */
  minScore?: number
}
 
/**
 * Calculate Levenshtein distance between two strings
 */
function levenshteinDistance(a: string, b: string): number {
  const matrix: number[][] = []
 
  for (let i = 0; i <= b.length; i++) {
    matrix[i] = [i]
  }
 
  for (let j = 0; j <= a.length; j++) {
    matrix[0][j] = j
  }
 
  for (let i = 1; i <= b.length; i++) {
    for (let j = 1; j <= a.length; j++) {
      if (b.charAt(i - 1) === a.charAt(j - 1)) {
        matrix[i][j] = matrix[i - 1][j - 1]
      } else {
        matrix[i][j] = Math.min(
          matrix[i - 1][j - 1] + 1,
          matrix[i][j - 1] + 1,
          matrix[i - 1][j] + 1
        )
      }
    }
  }
 
  return matrix[b.length][a.length]
}
 
/**
 * Calculate fuzzy match score between two strings (0-1, higher is better)
 */
function fuzzyMatchScore(query: string, target: string): number {
  const q = query.toLowerCase().trim()
  const t = target.toLowerCase().trim()
 
  // Exact match
  if (q === t) return 1.0
 
  // Contains match
  if (t.includes(q)) return 0.9
 
  // Word boundary match
  const words = t.split(/[\s_-]+/)
  for (const word of words) {
    Iif (word === q) return 0.85
    Iif (word.startsWith(q)) return 0.75
  }
 
  // Levenshtein-based fuzzy match
  const distance = levenshteinDistance(q, t)
  const maxLen = Math.max(q.length, t.length)
  const similarity = 1 - distance / maxLen
 
  return similarity > 0.5 ? similarity * 0.7 : 0
}
 
/**
 * Match a query against an array of strings (names, synonyms, etc.)
 */
function matchAgainstArray(query: string, targets: string[]): number {
  let bestScore = 0
  for (const target of targets) {
    const score = fuzzyMatchScore(query, target)
    if (score > bestScore) {
      bestScore = score
    }
  }
  return bestScore
}
 
/**
 * Extract keywords from a natural language query
 */
function extractKeywords(text: string): string[] {
  // Common stop words to filter out
  const stopWords = new Set([
    'a', 'an', 'the', 'is', 'are', 'was', 'were', 'be', 'been', 'being',
    'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could',
    'should', 'may', 'might', 'must', 'can', 'and', 'or', 'but', 'if',
    'then', 'else', 'when', 'where', 'why', 'how', 'what', 'which', 'who',
    'this', 'that', 'these', 'those', 'i', 'me', 'my', 'we', 'our', 'you',
    'your', 'he', 'she', 'it', 'they', 'them', 'their', 'in', 'on', 'at',
    'to', 'for', 'of', 'with', 'by', 'from', 'up', 'down', 'out', 'over',
    'under', 'about', 'into', 'through', 'during', 'before', 'after',
    'above', 'below', 'between', 'show', 'me', 'get', 'find', 'list',
    'give', 'tell', 'display', 'want', 'need', 'see', 'know'
  ])
 
  return text
    .toLowerCase()
    .replace(/[^\w\s]/g, ' ')
    .split(/\s+/)
    .filter(word => word.length > 2 && !stopWords.has(word))
}
 
/**
 * Score a cube against discovery criteria
 */
function scoreCube(
  cube: CubeMetadata,
  keywords: string[]
): { score: number; matchedOn: CubeDiscoveryResult['matchedOn']; suggestedMeasures: string[]; suggestedDimensions: string[] } {
  let totalScore = 0
  const matchedOn: CubeDiscoveryResult['matchedOn'] = []
  const measureScores: Map<string, number> = new Map()
  const dimensionScores: Map<string, number> = new Map()
 
  for (const keyword of keywords) {
    // Match cube name
    const nameScore = fuzzyMatchScore(keyword, cube.name)
    if (nameScore > 0.5) {
      totalScore += nameScore * 2 // Weight cube name matches higher
      Eif (!matchedOn.includes('name')) matchedOn.push('name')
    }
 
    // Match cube title
    const titleScore = fuzzyMatchScore(keyword, cube.title)
    if (titleScore > 0.5) {
      totalScore += titleScore * 1.5
      Eif (!matchedOn.includes('title')) matchedOn.push('title')
    }
 
    // Match cube description
    if (cube.description) {
      const descScore = fuzzyMatchScore(keyword, cube.description)
      if (descScore > 0.3) {
        totalScore += descScore
        if (!matchedOn.includes('description')) matchedOn.push('description')
      }
    }
 
    // Match example questions
    if (cube.exampleQuestions) {
      for (const question of cube.exampleQuestions) {
        const qScore = fuzzyMatchScore(keyword, question)
        if (qScore > 0.3) {
          totalScore += qScore * 1.5 // Example questions are valuable
          if (!matchedOn.includes('exampleQuestions')) matchedOn.push('exampleQuestions')
        }
      }
    }
 
    // Match measures
    for (const measure of cube.measures) {
      let measureScore = 0
 
      // Match measure name (without cube prefix)
      const measureName = measure.name.split('.').pop() || measure.name
      measureScore = Math.max(measureScore, fuzzyMatchScore(keyword, measureName))
 
      // Match measure title
      measureScore = Math.max(measureScore, fuzzyMatchScore(keyword, measure.title))
 
      // Match measure description
      if (measure.description) {
        measureScore = Math.max(measureScore, fuzzyMatchScore(keyword, measure.description) * 0.8)
      }
 
      // Match measure synonyms
      if (measure.synonyms) {
        measureScore = Math.max(measureScore, matchAgainstArray(keyword, measure.synonyms))
      }
 
      if (measureScore > 0.4) {
        totalScore += measureScore
        if (!matchedOn.includes('measures')) matchedOn.push('measures')
        const currentScore = measureScores.get(measure.name) || 0
        measureScores.set(measure.name, Math.max(currentScore, measureScore))
      }
    }
 
    // Match dimensions
    for (const dimension of cube.dimensions) {
      let dimScore = 0
 
      // Match dimension name (without cube prefix)
      const dimName = dimension.name.split('.').pop() || dimension.name
      dimScore = Math.max(dimScore, fuzzyMatchScore(keyword, dimName))
 
      // Match dimension title
      dimScore = Math.max(dimScore, fuzzyMatchScore(keyword, dimension.title))
 
      // Match dimension description
      Iif (dimension.description) {
        dimScore = Math.max(dimScore, fuzzyMatchScore(keyword, dimension.description) * 0.8)
      }
 
      // Match dimension synonyms
      if (dimension.synonyms) {
        dimScore = Math.max(dimScore, matchAgainstArray(keyword, dimension.synonyms))
      }
 
      if (dimScore > 0.4) {
        totalScore += dimScore
        if (!matchedOn.includes('dimensions')) matchedOn.push('dimensions')
        const currentScore = dimensionScores.get(dimension.name) || 0
        dimensionScores.set(dimension.name, Math.max(currentScore, dimScore))
      }
    }
  }
 
  // Normalize score
  const normalizedScore = Math.min(1, totalScore / (keywords.length * 2))
 
  // Get top suggested measures and dimensions
  const suggestedMeasures = Array.from(measureScores.entries())
    .sort((a, b) => b[1] - a[1])
    .slice(0, 5)
    .map(([name]) => name)
 
  const suggestedDimensions = Array.from(dimensionScores.entries())
    .sort((a, b) => b[1] - a[1])
    .slice(0, 5)
    .map(([name]) => name)
 
  return { score: normalizedScore, matchedOn, suggestedMeasures, suggestedDimensions }
}
 
/**
 * Detect analysis capabilities from cube metadata
 */
function detectCapabilities(cube: CubeMetadata): CubeDiscoveryResult['capabilities'] {
  // Check if cube has explicit eventStream meta
  const hasEventStream = !!(cube.meta?.eventStream)
 
  // Check if cube has time dimensions (needed for analysis modes)
  const hasTimeDimension = cube.dimensions.some(d => d.type === 'time')
 
  // Check for potential binding keys (dimensions that could identify entities)
  const hasPotentialBindingKey = cube.dimensions.some(d =>
    d.name.toLowerCase().includes('id') ||
    d.type === 'number' ||
    (cube.meta?.eventStream?.bindingKey && d.name === cube.meta.eventStream.bindingKey)
  )
 
  // Analysis modes available if explicit eventStream OR has needed dimensions
  const supportsAnalysisModes = hasEventStream || (hasTimeDimension && hasPotentialBindingKey)
 
  return {
    query: true,
    funnel: supportsAnalysisModes,
    flow: supportsAnalysisModes,
    retention: supportsAnalysisModes
  }
}
 
/**
 * Build analysis config with candidate dimensions
 */
function buildAnalysisConfig(cube: CubeMetadata): CubeDiscoveryResult['analysisConfig'] | undefined {
  const capabilities = detectCapabilities(cube)
 
  // Only include config if analysis modes are available
  if (!capabilities.funnel && !capabilities.flow && !capabilities.retention) {
    return undefined
  }
 
  // Candidate binding keys: explicit from meta, or inferred from dimension names
  const candidateBindingKeys: Array<{ dimension: string; description?: string }> = []
 
  // Check explicit eventStream config first
  if (cube.meta?.eventStream?.bindingKey) {
    const bindingDim = cube.dimensions.find(d => d.name === cube.meta?.eventStream?.bindingKey)
    candidateBindingKeys.push({
      dimension: cube.meta.eventStream.bindingKey,
      description: bindingDim?.description || 'Configured binding key'
    })
  }
 
  // Add dimensions with 'id' in name as candidates
  for (const dim of cube.dimensions) {
    const dimShortName = dim.name.split('.').pop()?.toLowerCase() || ''
    if (dimShortName.includes('id') && !candidateBindingKeys.some(c => c.dimension === dim.name)) {
      candidateBindingKeys.push({
        dimension: dim.name,
        description: dim.description || `Potential entity identifier`
      })
    }
  }
 
  // Candidate time dimensions
  const candidateTimeDimensions: Array<{ dimension: string; description?: string }> = []
 
  // Check explicit eventStream config first
  if (cube.meta?.eventStream?.timeDimension) {
    const timeDim = cube.dimensions.find(d => d.name === cube.meta?.eventStream?.timeDimension)
    candidateTimeDimensions.push({
      dimension: cube.meta.eventStream.timeDimension,
      description: timeDim?.description || 'Configured time dimension'
    })
  }
 
  // Add all time dimensions as candidates
  for (const dim of cube.dimensions) {
    if (dim.type === 'time' && !candidateTimeDimensions.some(c => c.dimension === dim.name)) {
      candidateTimeDimensions.push({
        dimension: dim.name,
        description: dim.description
      })
    }
  }
 
  // Candidate event dimensions (string dimensions that could represent event types)
  const candidateEventDimensions: Array<{ dimension: string; description?: string }> = []
  for (const dim of cube.dimensions) {
    const dimShortName = dim.name.split('.').pop()?.toLowerCase() || ''
    if (dim.type === 'string' && (
      dimShortName.includes('type') ||
      dimShortName.includes('event') ||
      dimShortName.includes('status') ||
      dimShortName.includes('state') ||
      dimShortName.includes('action')
    )) {
      candidateEventDimensions.push({
        dimension: dim.name,
        description: dim.description || 'Potential event type dimension'
      })
    }
  }
 
  return {
    candidateBindingKeys,
    candidateTimeDimensions,
    candidateEventDimensions
  }
}
 
/**
 * Generate hints for AI on next steps
 */
function generateHints(_cube: CubeMetadata, analysisConfig?: CubeDiscoveryResult['analysisConfig']): string[] {
  const hints: string[] = []
 
  if (!analysisConfig) {
    return hints
  }
 
  // Hint about choosing binding key if multiple options
  if (analysisConfig.candidateBindingKeys.length > 1) {
    hints.push('Choose bindingKey based on what entity to track through the analysis')
  }
 
  // Hint about discovering event types
  if (analysisConfig.candidateEventDimensions.length > 0) {
    const eventDim = analysisConfig.candidateEventDimensions[0].dimension
    hints.push(`Query ${eventDim} dimension to discover available values for funnel steps`)
  }
 
  // General workflow hint
  hints.push('Use /mcp/load with a standard query to discover dimension values before building analysis queries')
 
  return hints
}
 
/**
 * Discover relevant cubes based on topic or intent
 */
export function discoverCubes(
  metadata: CubeMetadata[],
  options: DiscoveryOptions = {}
): CubeDiscoveryResult[] {
  const { topic, intent, limit = 10, minScore = 0.1 } = options
 
  // Combine topic and intent into search text
  const searchText = [topic, intent].filter(Boolean).join(' ')
  if (!searchText.trim()) {
    // Return all cubes with basic info if no search criteria
    return metadata.slice(0, limit).map(cube => {
      const capabilities = detectCapabilities(cube)
      const analysisConfig = buildAnalysisConfig(cube)
      const hints = generateHints(cube, analysisConfig)
      const hasAnalysisModes = capabilities.funnel || capabilities.flow || capabilities.retention
 
      return {
        cube: cube.name,
        title: cube.title,
        description: cube.description,
        relevanceScore: 1,
        matchedOn: [] as CubeDiscoveryResult['matchedOn'],
        suggestedMeasures: cube.measures.slice(0, 5).map(m => m.name),
        suggestedDimensions: cube.dimensions.slice(0, 5).map(d => d.name),
        capabilities,
        analysisConfig,
        hints: hints.length > 0 ? hints : undefined,
        querySchemas: hasAnalysisModes ? QUERY_SCHEMAS : undefined
      }
    })
  }
 
  // Extract keywords from search text
  const keywords = extractKeywords(searchText)
  Iif (keywords.length === 0) {
    return []
  }
 
  // Score each cube
  const results: CubeDiscoveryResult[] = []
  for (const cube of metadata) {
    const { score, matchedOn, suggestedMeasures, suggestedDimensions } = scoreCube(cube, keywords)
 
    if (score >= minScore) {
      const capabilities = detectCapabilities(cube)
      const analysisConfig = buildAnalysisConfig(cube)
      const hints = generateHints(cube, analysisConfig)
 
      // Only include schemas if analysis modes are available
      const hasAnalysisModes = capabilities.funnel || capabilities.flow || capabilities.retention
 
      results.push({
        cube: cube.name,
        title: cube.title,
        description: cube.description,
        relevanceScore: score,
        matchedOn,
        suggestedMeasures,
        suggestedDimensions,
        capabilities,
        analysisConfig,
        hints: hints.length > 0 ? hints : undefined,
        querySchemas: hasAnalysisModes ? QUERY_SCHEMAS : undefined
      })
    }
  }
 
  // Sort by relevance and limit
  return results
    .sort((a, b) => b.relevanceScore - a.relevanceScore)
    .slice(0, limit)
}
 
/**
 * Find the best matching field across all cubes
 */
export function findBestFieldMatch(
  metadata: CubeMetadata[],
  fieldName: string,
  fieldType?: 'measure' | 'dimension'
): { field: string; cube: string; score: number; type: 'measure' | 'dimension' } | null {
  let bestMatch: { field: string; cube: string; score: number; type: 'measure' | 'dimension' } | null = null
 
  for (const cube of metadata) {
    // Check measures
    Iif (!fieldType || fieldType === 'measure') {
      for (const measure of cube.measures) {
        const measureName = measure.name.split('.').pop() || measure.name
        let score = fuzzyMatchScore(fieldName, measureName)
        score = Math.max(score, fuzzyMatchScore(fieldName, measure.title))
        if (measure.synonyms) {
          score = Math.max(score, matchAgainstArray(fieldName, measure.synonyms))
        }
 
        if (score > 0.5 && (!bestMatch || score > bestMatch.score)) {
          bestMatch = { field: measure.name, cube: cube.name, score, type: 'measure' }
        }
      }
    }
 
    // Check dimensions
    Eif (!fieldType || fieldType === 'dimension') {
      for (const dimension of cube.dimensions) {
        const dimName = dimension.name.split('.').pop() || dimension.name
        let score = fuzzyMatchScore(fieldName, dimName)
        score = Math.max(score, fuzzyMatchScore(fieldName, dimension.title))
        if (dimension.synonyms) {
          score = Math.max(score, matchAgainstArray(fieldName, dimension.synonyms))
        }
 
        if (score > 0.5 && (!bestMatch || score > bestMatch.score)) {
          bestMatch = { field: dimension.name, cube: cube.name, score, type: 'dimension' }
        }
      }
    }
  }
 
  return bestMatch
}